Matt Gray, DD s. BROWN IS THE NEW GREEN: Will South Korea’s commitment to coal power undermine its low-carbon strategy?, http://energytransitionkorea.org/sites/default/files/2020-04/%5BREPORT_EN%5D%20Brown%20is%20the%20new%20green.pdf (2019).
Cao, W. et al. “Solar tree”: Exploration of new form factors of organic solar cells. Renew. Energy 72134–139 (2014).
Google Scholar
Hyder, F., Baredar, P., Sudhakar, K. & Mamat, R. Performance and land footprint analysis of a photovoltaic solar tree. J. Clean. production 187432–448. https://doi.org/10.1016/j.jclepro.2018.03.249 (2018).
Google Scholar
Gangwar, P., Tripathi, RP & Singh, AK Solar Photovoltaic Tree: A Review of Designs, Performance, Applications and Challenges. Energy Sources Part A: Recov Util. About. Effects 20211–28 (2021).
Google Scholar
Jakubiec, JA & Reinhart, CF A method for predicting city-wide electricity gains from photovoltaic panels based on LiDAR and GIS data combined with hourly Daysim simulations. Floor. Energy 93127–143. https://doi.org/10.1016/j.solener.2013.03.022 (2013).
Google Scholar
Singh, R., Rawat, N. & Srivastava, R. Performance evaluation of a solar tree design and a fixed solar panel for efficient harnessing of solar energy. Int. J.Appl. Eng. Res. 142616-2621 (2019).
Google Scholar
Sekiyama, T. & Nagashima, A. Solar sharing for clean food and energy production: performance of agrivoltaic systems for maize, a typical shade-intolerant crop. Environments 665 (2019).
Google Scholar
Kumar, R. et al. Renewable energy adoption: design, development and evaluation of a solar tree for the mountainous region. Int. J.Energy Res. (2021).
Lee, DK & Lee, YK Roles of Saemaul Undong in Reforestation and NGO Activities for Sustainable Forest Management in Korea. J. Support. For. 201–16 (2005).
Google Scholar
Kim, K. & Zsuffa, L. Reforestation of South Korea: The story and analysis of a unique case in forest tree improvement and forestry. For. Chrono. 7058–64 (1994).
Google Scholar
Bizwire, K. Solar power installations causing loss of forest land, http://koreabizwire.com/solar-energy-facilities-causing-loss-of-forest-land/135385 (2019).
Kim, S. & Kim, S. Modeling performance estimation via machine learning of an agrophotovoltaic system in South Korea. Energies 146724 (2021).
Google Scholar
Kim, S., Kim, S. and Yoon, C.-Y. An efficient structure of an agrophotovoltaic system in a region with a temperate climate. Agronomy 111584 (2021).
Google Scholar
Lee, MH Study highlights potential of bamboo in carbon sequestration, http://koreabizwire.com/study-highlights-potential-of-bamboo-in-carbon-sequestration/158958 (2020).
Balaji, J., Rao, PN & Rao, SS Solar tree with different photovoltaic module installation positions. J. Green Eng. ten2710–2727 (2020).
Google Scholar
Youngwol Solar Technology LTD. Post-environmental impact study for the Youngwol solar power plant, https://www.eiass.go.kr/ (2016).
Metrak, M., Sulwinski, M., Chachulski, L., Wilk, M. & Suska-Malawska, M. In Impacts of climate change on high altitude ecosystems 665–694 (Springer, 2015).
Tae Sun, J. Solar plant could double the number of local businesses in the shadow of an abandoned mine, https://www.edaily.co.kr/news/read?newsId=01259526619368656&mediaCodeNo=257 (2018).
Serea, R. Google Earth Pro 7.3.4.8573, https://www.neowin.net/news/google-earth-pro-7348573/ (2022).
Airbus. Pléiades: Spot the detail thanks to our very high resolution satellite imagery, https://www.intelligence-airbusds.com/imagery/constellation/pleiades/ (2021).
Digital Globe. DigitalGlobe, https://en.wikipedia.org/wiki/DigitalGlobe (2021).
Liang, J., Gong, J. & Li, W. Applications and impacts of Google Earth: A ten-year review (2006-2016). ISPRS J. Photogram. Remote. Meaning. 14691-107 (2018).
Google Scholar
Mather, A., Mills, S., Stokes, M. & Fyfe, RT Ten years later: what can Google Earth offer the geoscience community?. Geol. Today 31216-221 (2015).
Google Scholar
Luo, L. et al. Google Earth as a powerful tool for archaeological and cultural heritage applications: a review. remote sensing ten1558 (2018).
Google Scholar
Warnasuriya, T., Kumara, M., Gunasekara, S., Gunaalan, K. & Jayathilaka, R. An improved method for detecting shoreline changes on small-scale beaches using Google Earth Pro. Tue. Geodesy 43541-572 (2020).
Google Scholar
Hanwha. Hanwha Q CELLS Korea Donates Solar Tree to National Assembly Climate Change Forum, https://www.hanwha.com/en/news_and_media/newsletter/hanwha-worldwide/october-2017.html?idx=0&page=1# (2017).
Belanger, B. & Urton, E. Situating eidetic photomontage in contemporary landscape architecture. Countryside. J 33109-126 (2014).
Google Scholar
Um, DB Comparative forest carbon baseline assessment between North Korea and Mongolia from Google Earth. Asia Pac. Showp. 62345–354 (2021).
Google Scholar
Fraunhofer Institute for Solar Energy Systems. Agrivoltaic: Opportunities for agriculture and the energy transition. A guideline for Germany, https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/APV-Guideline.pdf (2021).
Kang, Y.-E., Min, S.-H., Hong, S.-H., Kim, S.-B. & Im, S.-B. A study on the prototype landscape preservation plan in Namsa-Yedamchon, Sancheong-gun, Gyeongsangnam-do. J. Korean Soc. Rural diet. 1713–24 (2011).
Google Scholar
Jin, J. & Choi, S.-K. Method of operation of a load test device using an energy storage system for site acceptance testing of a fire emergency generator. Energies 145395 (2021).
Google Scholar
Hayati, E., Abdi, E., Majnounian, B. & Makhdom, M. Application of sensitivity analysis in the planning and evaluation of forest road networks. J. Agric. Science. Technology. 15781–792 (2013).
Google Scholar
Korea Forest Service. Enhancement of forest carbon sink function through expansion of new forest roads, https://www.korea.kr/news/pressReleaseView.do?newsId=156428835 (2020).
Korea Forest Service. Basic forestry statistics in South Korea, https://kfss.forest.go.kr/stat/ptl/article/articleDtl.do (2020).
Hyder, F., Sudhakar, K. & Mamat, R. Solar PV Tree Design: A Review. Renew. Sustain. Energy Rev. 821079-1096 (2018).
Google Scholar
World Bank. List of countries by population density, https://statisticstimes.com/demographics/countries-by-population-density.php (2019).
Allen, F. & Carletti, E. An overview of the crisis: causes, consequences and solutions. Int. Rev. Finance ten1–26 (2010).
Google Scholar
Son, N If you sell the available land in South Korea, you can buy land six times the size of Canada, https://www.pressian.com/pages/articles/30595 (2005).
Tong, D. et al. Geophysical constraints on the reliability of solar and wind energy in the world. Nat. Common. 121–12 (2021).
Google Scholar
Lee Keun Dae, KG Set up and operation of a medium and long term unit cost (LCOE) forecasting system to expand renewable energy supply, http://www.keei.re.kr/web_keei/d_results.nsf/0/A10FCB3438C55F4349258669004FC436/$file/%EA%B8%B0%EB%B3%B8%202020-21_%EC%9E%AC%EC% 83%9D%EC%97%90%EB%84%88%EC%A7%80%20%EA%B3%B5%EA%B8%89%ED%99%95%EB%8C%80%EB% A5%BC%20%EC%9C%84%ED%95%9C%20%EC%A4%91%EC%9E%A5%EA%B8%B0%20%EB%B0%9C%EC%A0% 84%EB%8B%A8%EA%B0%80(LCOE)%20%EC%A0%84%EB%A7%9D%20%EC%8B%9C%EC%8A%A4%ED%85%9C %20%EA%B5%AC%EC%B6%95%20%EB%B0%8F%20%EC%9A%B4%EC%98%81.pdf (2020).
Kang, SJ, Kim, SJ & Kim, DH Green Growth and Solar Photovoltaic Technologies in Korea. Korea World Econ. 18135-166 (2017).
Google Scholar
Son, C.-W., Kim, T.-K. & Seo, T.-I. Structural wind load analysis of a foldable solar power system. J. Korea Acad. Ind. Co-op. Soc. 191–7 (2018).
Google Scholar
Milardi, M. Adaptive models for the energy efficiency of building envelopes. J. Technol. Innov. Renew. Energy 6108-117 (2017).
Google Scholar
Hong, G., Lee, S.-W., Kang, J.-Y. & Kim, H.-G. Thermal behavior and measures to prevent condensation of a newly developed exterior wall panel. Sustainability 11912 (2019).
Google Scholar
Shabbir, MNSK, Chowdhury, MSA & Liang, X. A feasibility and design analysis guideline for concentrated solar power plants. Box. J. Electr. Calculation. Eng. 41203-217 (2018).
Google Scholar
Geurts, CP & van Bentum, CA A new guideline for wind loads on solar energy systems. ICBEST 20149–12 (2014).
Google Scholar